Instant Electric Power Tranny Together with Self- Regulated Production Voltage Pertaining in Wireless Power Transfer
نویسندگان
چکیده
This paper proposes a novel resonator structure for efficiency and transferred power improvements: a transmitter (a receiver) that consists of two strongly coupled resonators. The two strongly coupled resonators are embedded within a transmitter device (a receiver device) and behave as a single resonator with enhanced performances. Unlike the conventional four-coil system, the first and the fourth resonators are also designed to have high loaded-Q and maximum cross couplings. Therefore, the first and the fourth resonators also take part in the coupled resonance with opposite-side resonators. This provides additional energy exchange path. The exact design guidelines are provided for each different resonance topology from analytical derivation. It is analyzed and experimentally demonstrated that the efficiency and the transferred power are increased by the proposed two-resonator technique. For a 30 cm × 25 cm parallel-resonant transmitter and an 18 cm × 16 cm parallel-resonant receiver at 13-cm distance, the efficiency and the transferred power with the proposed technique are 65.2% and 17.2 W, respectively, whereas those values without the proposed technique are only 37.3% and 6.2 W.
منابع مشابه
High Efficient Wireless Charger for Electric Vehicle with Reduced Sensitivity to Misalignment using Multilevel Inverter
Wireless power transfer (WPT) has been found to be a practical replacement for cable power transfer which provides a wide range of applications. This technology offers a remarkable solution for charging electric vehicles (EVs) due to more convenience and increased safety. Moreover dynamic (in-motion) wireless charging offers the possibility of reducing the energy storage requirement on the veh...
متن کاملImplementation of Identical Spiral Square Inductive Coils for Wireless EV Battery Charging Application
In recent years, the popularity of wireless inductive power transfer (WIPT) system for electric vehicle battery charging (EVBC) is always ever-increasing. In the WIPT inductively coupled coil structure is the heart of the system and the mutual inductance (MI) between the coupled coils is the key factor for effective power transfer. This paper presents the analysis of mutual inductance between t...
متن کاملThe Effectiveness of Dynamic Voltage Restorer with the Distribution Networks for Voltage Sag Compensation
This paper discusses the Dynamic voltage restorer (DVR) operation and control for Voltage sags compensation. DVR is a series connected power electronic based device that can quickly mitigate the voltage sags in the system and restore the load voltage to the pre-fault value. Voltage sag associated with faults in transmission and distribution systems, energizing of transformers, and starting of l...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملA Modular AC-DC Power Converter with Zero Voltage Transition for Electric Vehicles
A study of the fundamental of operation of a three-phase AC-DC power converter that uses Zero-Voltage Transition (ZVT) together with Space Vector Pulse Width Modulation (SVPWM) is presented. The converter is basically an active rectifier divided into two converters: a matrix converter and an H bridge, which transfer energy through a high-frequency transformer, resulting in a modular AC-DC wirel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015